Two New Dibenzofurans from the Underground Parts of Ligularia intermedia

Mian ZHANG¹*, Zheng Tao WANG¹, Hai Lin QIN¹, Xian Guo ZHAO¹, Guo Jun XU¹, Jian Xin LI², Tsuneo NAMBA²

¹Department of Pharmacogonosy, China Pharmaceutical University, Nanjing 210038 ²Research Institute for Wakan-Yaku, Toyama Medical and Pharmaceutical University, Toyama, Japan

Abstract: Two new dibenzofurans, 7,8-dimethoxy-4-methyldibenzofuran-1-carboxaldehyde, named ligumedial (1) and 7,8-dimethoxy-4-methyldibenzofuran-1-carboxylic acid, named ligumediaoic acid (2), have been isolated from the underground parts of *Ligularia intermedia*. Their structures were elucidated by spectroscopic methods.

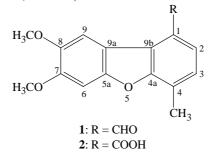
Keywords: Ligularia intermedia, Compositae, Chinese herbs, dibenzofuran, ligumedial, ligumediaoic acid.

Ligularia intermedia Nakai (Compositae) is a perennial herbaceous plant widely distributed in China. Its roots and rhizomes, commonly known as *Shanziwan*, are used as an antitussive and phlegm-expelling remedy in Chinese traditional medicine. The fresh plants of *L. intermedia* mainly contain sesquiterpene and benzofuran compounds¹. We have investigated the dried underground parts of *L. intermedia* and isolated two new dibenzofurans, besides 5 known compounds, friedelin, euparin, lupeol, β -sitosterol and daucosterol². This paper reports the structure elucidation of two new dibenzofurans, named ligumedial (1) and ligumediaoic acid (2). Naturally occurring dibenzofurans are noted for their biological, particularly antibiotic, activities³.

Compound **1** was obtained as red powder. The molecular formula of **1** was assigned as $C_{16}H_{14}O_4$ from HRMS (*m/z* 270.0898, calcd. 270.0892). The IR spectrum displayed peaks at 1685 (aldehyde group), 1630, 1610 (aromatic residue) and 1300 cm⁻¹ (aromatic ether). The ¹³C NMR spectrum (**Table 1**) showed 12 aromatic carbons, one carbonyl carbon and three methyl carbons, indicating that **1** possessed a dibenzofuran skeleton⁴. The ¹H NMR spectrum showed a singlet at δ 10.22 attributed to an aldehyde proton. The ortho-coupled H-2 and H-3 protons appeared as doublets at δ 7.71 (J=7.6 Hz) and δ 7.33 (J=7.6 Hz). The other two aromatic protons, H-6 and H-9, gave singlets at δ 7.15 and 8.55 respectively. Two signals at δ_H 4.01 (s, 3H), δ_H 4.08 (s, 3H) in the ¹H NMR spectrum indicated the presence of two methoxy groups. In addition, the presence of an aromatic

^{*}Email: mianzhang@hotmail.com

Mian ZHANG et al.


methyl group was apparent from a singlet at δ_{H} 2.66 (s, 3H) and from a quartet at δ_{C} 15.8.

The positions of the four substituent groups on the dibenzofuran skeleton were determined unambiguously from the analysis of the NOESY, HMQC, HMBC and COLOC spectra.

The NOESY spectrum of **1** showed that the CHO proton signal correlated to both the H-2 and the H-9. The aromatic methyl protons correlated to the H-3. The methoxy protons at δ 4.08 showed correlation with the H-9, and another methoxy protons showed correlation with the H-6. These NOESY interactions indicated that the two OMe substituents should be at positions 7 and 8, and the CHO and CH₃ substituents at positions 1 and 4 respectively.

In the COLOC experiment of **1**, the CHO proton showed connectivity to the C-9b and C-2 carbons, while the methyl protons showed connectivity to the C-3 and C-4a carbons. The methoxy protons at δ 4.08 showed connectivity to C-8, and the methoxy protons at δ 4.01 correlated to C-7. The H-6 signal showed long range correlation to C-8 and C-9a, while H-9 correlated to C-7 and C-5a, respectively. HMQC and HMBC experiments provided further information about the structure of **1**. Therefore, **1** was identified as 7,8-dimethoxy-4-methyldibenzofuran-1-carboxaldehyde, named ligumedial.

Compound **2** has the molecular formula $C_{16}H_{14}O_5$ assigned from the HRMS analysis (*m*/*z* 286.0824, calcd. 286.0841), which differed from compound **1** by having one more oxygen, suggesting that **2** was likely to be the oxidized product of **1**. It gave very similar ¹H NMR and ¹³C NMR spectra to **1**, a significant difference was only for the carbonyl carbon at δ_C 167.7, which was a characteristic carboxylic acid carbon instead of the aldehyde carbon at δ_C 192.4 of **1**. Further more, the absence of CHO proton in the ¹H NMR spectrum of **2** also gave evidence for the structure confirmation. Therefore **2** was identified as 7,8-dimethoxy-4-methyldibenzofuran-1-carboxylic acid, named ligumediaoic acid, and the structure was further confirmed by 2D NMR experiments (¹H-¹H COSY, HMQC, HMBC, NOESY).

Ligumedial (7,8-*dimethoxy*-4-*methyldibenzofuran*-1-*carboxaldehyde*) (1). Red powder. IR v (KBr) cm⁻¹: 1690(C=O), 1635, 1610, 1570, 1370. MS *m/z* (rel. int): 270.0898 [M]⁺ (92) (calcd for C₁₆H₁₄O₄: 270.0892), 255 [270-Me](39), 227 [255-CO](13), 212(3), 184(46), 167(2), 155(10), 135(3), 128(13), 102(5), 77(6), 69(5). ¹H NMR (400MHz, CDCl₃) δ : 10.22 (s, 1H, 1-CHO), 8.55 (s, 1H, H-9), 7.71 (d, 1H, J = 7.6 Hz, H-2), 7.33 (d, 1H, J = 7.6 Hz, H-3), 7.15 (s, 1H, H-6), 4.08 (s, 3H, 8-OMe), 4.01 (s, 3H, 7-OMe), 2.66 (s, 3H, 4-Me). ¹³C NMR data are listed in **Table 1**.

622 **Two New Dibenzofurans from the Underground Parts of** *Ligularia intermedia*

Ligumediaoic acid (7,8-*dimethoxy*-4-*methyldibenzofuran*-1-*carboxylic acid*) (2). Yellowish-brown solid. IR v (KBr) cm⁻¹: 3300~2500, 1680(C=O), 1610, 1590, 1480, 1460, 1440. MS *m*/*z* (rel. int): 286.0824 [M]⁺ (98) (calcd for C₁₆H₁₄O₅: 286.0841), 271 [286-Me](32), 243 [271-CO](8), 225(36), 207(8), 197(24), 184(22), 144(8), 115(10). ¹H NMR (400MHz, DMSO-d₆) δ : 8.40 (s, 1H, H-9), 7.86 (d, 1H, J = 7.8 Hz, H-2), 7.43 (s, 1H, H-6), 7.32 (d, 1H, J = 7.8 Hz, H-3), 3.90 (s, 3H, 8-OMe), 3.85 (s, 3H, 7-OMe), 2.59 (s, 3H, 4-Me). ¹³C NMR data are listed in **Table 1**.

Table 1 ¹³C NMR spectral data of ligumedial (1) and Ligumediaoic acid (2) (δ ppm)

No. of Carbon	1	2	No. of Carbon	1	2
1	129.1 (s)	125.9 (s)	8	145.8 (s)	145.3 (s)
2	130.2 (<i>d</i>)	125.8 (d)	9	107.5 (<i>d</i>)	108.0 (d)
3	125.8 (d)	125.6 (d)	9a	115.3 (s)	114.1 (s)
4	128.6 (s)	123.6 (s)	9b	123.2 (s)	122.4 (s)
4a	155.4 (s)	154.7 (s)	4-Me	15.8 (q)	15.1 (q)
5a	152.4 (s)	151.5 (s)	7-OMe	56.2 (q)	55.8 (q)
6	94.5 (<i>d</i>)	95.3 (d)	8-OMe	56.4 (q)	55.9 (q)
7	151.1 (s)	150.6 (s)	СНО	192.4 (<i>d</i>)	
			COOH		167.7 (d)

 δ values of 1 and 2 were measured in CDCl₃ and DMSO-d₆ respectively.

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China for outstanding young scientists to Z. T. Wang (No. 39825129).

References

- 1. F. Bohlmann, K.-H. Knoll, Phytochemistry, 1979, 18, 877.
- 2. M. Zhang, Z. T. Wang, X. G. Zhao, G. J. Xu, J. X. Li, T. Namba, *Chiense Traditional and Herbal Drugs*, **1999**, *30*, 93.
- 3. J. A Elix, D. A Venables, M. Wedin, The Australian Journal of Chemistry, 1994, 47, 1335.
- 4. A. R. Katritzky, Handbook of Heterocyclic Chemistry, Pergamon Press, New York, 1985, 60.

Received 10 October, 2001